LINEAR BOUNDED AUTOMATA **LBA**S 1

Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference:

The input string tape space is the only tape space allowed to use

All computation is done between end markers

We define LBA's as NonDeterministic

Open Problem:

NonDeterministic LBA's have same power with Deterministic LBA's? Example languages accepted by LBAs:

$$L = \{a^n b^n c^n\}$$

$$L = \{a^{n!}\}$$

Conclusion:

LBA's have more power than NPDA's

Later in class we will prove:

LBA's have less power than Turing Machines

A UNIVERSAL TURING MACHINE

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

Reprogrammable machine

Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

Description of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Transition Encoding

Encoding:

Transition: $\delta(q_1, a) = (q_2, b, L)$ 10101101101

separator

Machine Encoding

Transitions:

 $\delta(q_1, a) = (q_2, b, L)$ $\delta(q_2, b) = (q_3, c, R)$

Encoding: 10101101101 00 1101101110111011

16

separator

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine M as a binary string of 0's and 1's

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of the language is the binary encoding of a Turing Machine Language of Turing Machines

L = { 010100101, (Turing Machine 1)

00100100101111, (Turing Machine 2)

111010011110010101,

.....}

Infinite sets are either:

Countable

or

Uncountable

Countable set:

There is a one to one correspondence between elements of the set and positive integers

2n corresponds to n+1

The set of rational numbers Example: is countable

Rational numbers: $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, ...$

Better Approach

Correspondence:

$\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2},$ 1, 2, 3, 4, 5, ...

Positive Integers:

the set of rational numbers is countable by describing an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one

and

Each string is generated in finite time

strings $s_1, s_2, s_3, \ldots \in S$

Observation:

A set is countable if there is an enumeration procedure for it

Example:

The set of all strings $\{a,b,c\}^+$ is countable

We will describe the enumeration procedure

39

Naive procedure:

Produce the strings in lexicographic order:

а аа ааа аааа

Doesn't work: strings starting with b will never be produced

Better procedure: Proper Order

1. Produce all strings of length 1

2. Produce all strings of length 2

3. Produce all strings of length 3

4. Produce all strings of length 4

Produce strings in Proper Order:

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

43

Enumeration Procedure:

Repeat

 Generate the next binary string of O's and 1's in proper order

2. Check if the string describes a Turing Machine if YES: print string on output tape if NO: ignore string

Definition: A set is uncountable if it is not countable

Let S be an infinite countable set The powerset 2^S of S is uncountable

Since S is countable, we can write

$$S = \{s_1, s_2, s_3, \ldots\}$$
Elements of S

Elements of the powerset have the form:

 $\{s_1, s_3\}$

 $\{s_5, s_7, s_9, s_{10}\}$

49

We encode each element of the power set with a binary string of 0's and 1's Encoding Powerset Sz S_1 S_4 *S*7 element $\{S_1\}$ 1 ()() $\{s_2, s_3\}$ 1 1 () 50 $\{s_1, s_3, s_4\}$

Let's assume (for contradiction) that the powerset is countable.

Then: we can enumerate the elements of the powerset

Take the powerset element whose bits are the complements in the diagonal

The new element must be some t_i of the powerset

However, that's impossible: from definition of t_i the i-th bit of t_i must be the complement of itself

Contradiction!!!

Since we have a contradiction:

The powerset 2^S of S is uncountable

56

An Application: Languages Example Alphabet : {a,b} The set of all Strings: $S = \{a, b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \dots\}$ infinite and countable

Example Alphabet : $\{a, b\}$ The set of all Strings:

$$S = \{a, b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \dots\}$$

infinite and countable

A language is a subset of S :

 $L = \{aa, ab, aab\}$

Example Alphabet : $\{a, b\}$ The set of all Strings:

$$S = \{a,b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \dots\}$$

infinite and countable

The powerset of S contains all languages: $2^{S} = \{\{\lambda\}, \{a\}, \{a,b\} \{aa,ab,aab\}, \ldots\}$ L_{1} L_{2} L_{3} L_{4} ...

Languages: uncountable

Turing machines: countable

There are infinitely many more languages than Turing Machines

There are some languages not accepted by Turing Machines

These languages cannot be described by algorithms