Linear Bounded Automata LBAs

```
1
```


Linear Bounded Automata (LBAs)

 are the same as Turing Machines with one difference:The input string tape space is the only tape space allowed to use

Linear Bounded Automaton (LBA)

Input string

in tape
Right-end marker

All computation is done between end markers

We define LBA's as NonDeterministic

Open Problem:

NonDeterministic LBA's
have same power with
Deterministic LBA's?

Example languages accepted by LBAs:

$$
\begin{aligned}
& L=\left\{a^{n} b^{n} c^{n}\right\} \\
& L=\left\{a^{n!}\right\}
\end{aligned}
$$

Conclusion:
LBA's have more power than NPDA's

Later in class we will prove:
LBA's have less power
than Turing Machines

A Universal Turing Machine

A limitation of Turing Machines:

Turing Machines are "hardwired"

> they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

- Reprogrammable machine
- Simulates any other Turing Machine

Universal Turing Machine

 simulates any other Turing Machine MInput of Universal Turing Machine:
Description of transitions of M
Initial tape contents of M

Three tapes
Tape 1

\section*{| Tape 1 | | | |
| :---: | :--- | :--- | :--- |
| | | | | Description of M}

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

Symbols:
a

c

d
Encoding:
1
11
111
1111
-••

State Encoding

States:

q_{1}

q_{2}
q_{3}

q_{4}

Encoding:

1

11

111

1111
Head Move Encoding
Move:
Encoding:
L
R

!
11

Transition Encoding

Transition:

Encoding:
10101101101
separator

Machine Encoding

Transitions:

$\delta\left(q_{1}, a\right)=\left(q_{2}, b, L\right)$
 Encoding:

$\delta\left(q_{2}, b\right)=\left(q_{3}, c, R\right)$
separator

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine M as a binary string of 0's and 1's

A Turing Machine is described with a binary string of O's and 1's

Therefore:

The set of Turing machines forms a language:
each string of the language is
the binary encoding of a Turing Machine

Language of Turing Machines

$$
\begin{aligned}
L=\{ & 010100101,
\end{aligned} \text { (Turing Machine 1) }
$$

111010011110010101,
...... \}

Countable Sets

Infinite sets are either:

Countable
or

Uncountable

Countable set:

There is a one to one correspondence between
elements of the set and positive integers

Example:

The set of even integers is countable

Even integers: $\quad 0,2,4,6, \ldots$

Correspondence:

$$
11
$$

Positive integers: $1,2,3,4, \ldots$
$2 n$ corresponds to $n+1$

Example:
The set of rational numbers is countable

Rational numbers: $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \ldots$

Naïve Proof

Rational numbers: $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots$
 Correspondence:
 $$
11
$$

Positive integers: $1,2,3, \ldots$

Doesn'† work:

we will never count numbers with nominator 2 :
 $$
\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \infty
$$

Better Approach

Rational Numbers:

Correspondence:

Positive Integers:
$1,2,3,4,5, \ldots$

We proved:

the set of rational numbers is countable by describing an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a
Turing Machine that generates all strings of S one by one and

Each string is generated in finite time
strings $s_{1}, s_{2}, s_{3}, \ldots \in S$

Enumeration
Machine for S

output (on tape)
 $$
s_{1}, s_{2}, s_{3}, \ldots
$$

A

Finite time: $t_{1}, t_{2}, t_{3}, \ldots$

Enumeration Machine

Configuration

Time 0

q_{0}

Time t_{1}

q_{s}

Time t_{2}

q_{s}

Time t_{3}

q_{s}

Observation:

A set is countable if there is an enumeration procedure for it

Example:

> The set of all strings $\{a, b, c\}^{+}$ is countable

Proof:

We will describe the enumeration procedure

Naive procedure:

Produce the strings in lexicographic order:

a

$a a$
$a a a$

aaaa

......
Doesn'† work:
strings starting with b
will never be produced

Better procedure: Proper Order

1. Produce all strings of length 1
2. Produce all strings of length 2
3. Produce all strings of length 3
4. Produce all strings of length 4

Produce strings in Proper Order:

 $\left.\begin{array}{l}\boldsymbol{a} \\ \boldsymbol{b} \\ \boldsymbol{c}\end{array}\right\}$ length 1

aa
$a b$
ac
ba
$b b\}$ length 2
bc
ca
$c b$
cc

Theorem: The set of all Turing Machines

 is countableProof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumeration Procedure:

Repeat

1. Generate the next binary string of 0's and 1's in proper order
2. Check if the string describes a Turing Machine
if YES: print string on output tape
if NO: ignore string

Uncountable Sets

Definition: A set is uncountable if it is not countable

Theorem:

Let S be an infinite countable set
The powerset 2^{S} of S is uncountable

Proof:

Since S is countable, we can write

$$
s=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}
$$

Elements of S

Elements of the powerset have the form:

$$
\left\{s_{1}, s_{3}\right\}
$$

$$
\left\{s_{5}, s_{7}, s_{9}, s_{10}\right\}
$$

We encode each element of the power set with a binary string of O's and 1's

Powerset element	Encoding				
	S_{1}	s_{2}	s_{3}	s_{4}	
$\left\{s_{1}\right\}$	1	0	0	0	\ldots
$\left\{s_{2}, s_{3}\right\}$	0	1	1	0	
$\left\{s_{1}, s_{3}, s_{4}\right\}$	1	0	1	1	

Let's assume (for contradiction)

 that the powerset is countable.Then: we can enumerate the elements of the powerset

Powerset element

Encoding

$$
\left.\begin{array}{lllllll}
t_{1} & & 1 & 0 & 0 & 0 & 0 \\
& & & & & \\
t_{2} & & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Take the powerset element whose bits are the complements in the diagonal

$$
\left.\begin{array}{lllllll}
t_{1} & & (1) & 0 & 0 & 0 & 0 \\
& \cdots & \cdots \\
t_{2} & 1 & 1 & 0 & 0 & 0 & \cdots \\
t_{3} & & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

New element: 0011...

The new element must be some t_{i} of the powerset

However, that's impossible:
from definition of t_{i}
the i-th bit of t_{i} must be the complement of itself

Contradiction!!!

Since we have a contradiction:

The powerset 2^{S} of S is uncountable

An Application: Languages
Example Alphabet : $\{a, b\}$
The set of all Strings:

$$
S=\{a, b\}^{*}=\{\lambda, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}
$$

Example Alphabet : $\{a, b\}$

The set of all Strings:

$$
S=\{a, b\}^{*}=\{\lambda, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}
$$

A language is a subset of S :

$$
L=\{a a, a b, a a b\}
$$

Example Alphabet : $\{a, b\}$
The set of all Strings:

$$
S=\{a, b\}^{*}=\{\lambda, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}
$$

The powerset of S contains all languages:

$$
\begin{gathered}
2^{S}=\left\{\begin{array}{ccc}
\{\lambda\},\{a\}, & \{a, b\} & \{a a, a b, a a b\}, \ldots\} \\
L_{1} & L_{2} \quad L_{3} \quad L_{4} \quad \cdots \\
\text { uncountable }
\end{array}\right.
\end{gathered}
$$

Languages: uncountable

There are infinitely many more languages than Turing Machines

Conclusion:

There are some languages not accepted by Turing Machines

These languages cannot be described by algorithms

